
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Units

\qquad

- The measurements of physical quantities \qquad are expressed in terms of units.

Physical Quantity	Units
time	second (s)
mass	kilogram (kg)
distance	meter (m)
volume	liter (L)
speed	meters/second $(\mathrm{m} / \mathrm{s})$
temperature	Celsius $\left({ }^{\circ} \mathrm{C}\right)$

SI Prefixes					
Small			Large		
centi	c	10^{-2}	kilo	k	10^{3}
milli	m	10^{-3}	mega	M	10^{6}
micro	μ	10^{-6}	giga	G	10^{9}
nano	n	10^{-9}	terra	T	10^{12}
pico	p	10^{-12}			

Converting Units

- Calculations are done using base units.
- To convert to base units, multiply the value by the appropriate multiplier.

$$
2 \mathrm{~nm}=? \mathrm{~m}
$$

\qquad
\qquad
\qquad
\qquad
The multiplier for nano is 10^{9}.

$$
2 \mathrm{~nm}=2 \times 10^{-9} \mathrm{~m}
$$

\qquad

Examples
$50 \mu \mathrm{~m}=\underline{50 \times 10^{-6}} \mathrm{~m}$
$250 \mathrm{~g}=\ldots-2.25$
kg
$\frac{250}{10^{3}}$

Scientific Notion

- Many measurements we encounter are \qquad values that are easily understood and manipulated. \qquad
- Volume of a soda can $=355 \mathrm{~mL}$
- Distance from Winnipeg to Toronto $=2000 \mathrm{~km}$
\qquad

Soda - Aaron Holmes (Pixabay)
Map - Jill (Pixabay)
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- A shorthand method of writing very small and very large numbers is called scientific notation, in which we express numbers in terms of exponents of 10.
- Scientific notation follows the general \qquad format $a \times 10^{n}$. Where a is a decimal number and n is an integer.
- 1.67×10^{-27}
- 5.97×10^{24}
- To write a number in scientific notation, move the decimal point to the right of the first digit in the number.
- Count the number of places that you moved the decimal point.
- The number of places moves is the exponent.

©Laura Strickland - MyCuteGraphics.com (used with permission)
- For large numbers, the decimal moves to the left and the exponent will be positive.
122,0.000.0.000.0000.

$$
1.23 \times 10^{11}
$$

\qquad
\qquad
\qquad

- For small numbers, the decimal moves to the right and exponent will be negative.
$0.000,0000001,23$
1.23×10^{-9}

Examples

$250000000 \mathrm{~m}=\underline{2.5 \times 10^{8} \mathrm{~m}}$
$0.0000068 \mathrm{~kg}=\ldots .6 \times 10^{-6} \mathrm{~kg}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Examples
$250000000 \mathrm{~m}=\ldots 2.5 \times 10^{8} \mathrm{~m}$
$0.0000068 \mathrm{~kg}=\ldots 6.8 \times 10^{-6} \mathrm{~kg}$

Graphing

- Making a graph helps you see how two \qquad factors called variables are related.
- A line graph has a horizontal x-axis and a
\qquad vertical y-axis.

- When making a line graph make sure to:
- Create an appropriate title and axis labels.
- Place the independent variable (the one that
\qquad we change) on the x-axis. \qquad
- Place the dependent variable (the one that we are measuring) on the y-axis.
\qquad
- Create a reasonable scale for each axis.
- Plot the points and connect them with straight
\qquad lines.

Example

- Use the data to draw a line graph.

Age of Dog (years)	Mass of Dog (kg)
0	1
1	5
2	8
3	8
4	9
6	8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Algebra

- Scientists use equations to express \qquad physical relationships between measurable quantities.
- Algebra is the tool that scientists use to relate one equation to another, or to convert an equation into a more useful form.

\qquad
\qquad
\qquad
\qquad
\qquad
- To solve an algebraic equation, we need to "undo" the operations and isolate the variable.

$$
x+3=5
$$

To undo the addition, we need to subtract 3 from both sides of the equation.

$$
x+3-3=5-3
$$

$$
x=2
$$

$$
2 x=8
$$

To undo the multiplication, we need to divide 2 from both sides of the equation.

$$
\begin{aligned}
& \frac{2 x}{2}=\frac{8}{2} \\
& x=4 \\
& \hline
\end{aligned}
$$

$$
x-2=6
$$

To undo the subtraction, we need to add 2 from both sides of the equation.

$$
x-2+2=6+2
$$

$$
x=8
$$

$$
\frac{x}{3}=4
$$

To undo the division, we need to multiply 3 trom both sides of the equation.

$$
\begin{aligned}
3 \times \frac{x}{3} & =4 \times 3 \\
x & =12
\end{aligned}
$$

- Some equations take more than one step to solve.

$$
\begin{gathered}
2 x+3=7 \\
\text { Subtract 3 from both sides. } \\
2 x+3-3=7-3 \\
2 x=4 \\
\text { Divide both sides by } 2 . \\
\frac{2 x}{2}=\frac{4}{2} \\
x=2
\end{gathered}
$$

$$
\begin{gathered}
\frac{x-4}{3}=1 \\
\text { Multiply both sides by } 3 \\
3 \frac{x-4}{3}=1 \times 3 \\
x-4=3 \\
\text { Add } 4 \text { to both sides. } \\
x-4+4=3+4 \\
x=7
\end{gathered}
$$

| $\frac{6}{x}=3$ |
| :---: | :---: |
| Mutiply both sides by x |
| $x \frac{6}{x}=3 x$ |
| $6=3 x$ |
| Divide both sides by 3. |
| $\frac{6}{3}=\frac{3 x}{3}$ |
| $2=x$ |
| $x=2$ |
| or |

\qquad
\qquad

