

Units

• The measurements of physical quantities are expressed in terms of units.

Physical Quantity	Units
time	second (s)
mass	kilogram (kg)
distance	meter (m)
volume	liter (L)
speed	meters/second (m/s)
temperature	Celsius (°C)

SI Prefixes

Small		
centi	С	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}

Large		
kilo	k	10^{3}
mega	М	10^{6}
giga	G	10^{9}
terra	Т	10^{12}

Converting Units

- Calculations are done using base units.
- To convert to base units, multiply the value by the appropriate multiplier.

$$2 \text{ nm} = ? \text{ m}$$

The multiplier for nano is 10^9 .

$$2 \text{ nm} = 2 \times 10^{-9} \text{ m}$$

• To convert from base units to a prefixed value, divide by the appropriate multiplier.

$$5000 \text{ m} = ? \text{km}$$

The multiplier for kilo is 10^3 .

$$\frac{5000 \text{ m}}{10^3} = 5 \text{ km}$$

Theripy (personal us

Examples

$$50 \, \mu \text{m} = \underline{50 \times 10^{-6}} \, \text{m}$$

$$250 \text{ g} = \underbrace{\begin{array}{c} 0.25 \\ \\ 250 \\ \hline 10^{3} \end{array}} \text{ kg}$$

Scientific Notion

- Many measurements we encounter are values that are easily understood and manipulated.
 - Volume of a soda can = 355 mL
 - Distance from Winnipeg to Toronto = 2000 km

Soda – Aaron Holmes (Pixabay) Map – Jill (Pixabay)

- But there also are extreme values.
 - Width of a human hair = 0.00005 m
 - Radius of an electron = 0.00000000000047 m

- A shorthand method of writing very small and very large numbers is called scientific notation, in which we express numbers in terms of exponents of 10.
- Scientific notation follows the general format $a \times 10^n$. Where a is a decimal number and n is an integer.
 - 1.67×10^{-27}
 - 5.97×10^{24}

 To write a number in scientific notation, move the decimal point to the right of the first digit in the number. 	
Count the number of places that you moved the decimal point.	
The number of places moves is the exponent.	
©Laura Strickland – MyCuteGraphics.com (used with permission)	
For large numbers, the decimal moves to	
the left and the exponent will be positive.	
123.000.000.000.	
1.23×10^{11}	
 For small numbers, the decimal moves to the right and exponent will be negative. 	
0.000.000.001.23	
1.23×10^{-9}	
Evamples	
Examples	
$250\ 000\ 000\ m = \ \underline{2.5 \times 10^8\ m}$	
$0.000\ 006\ 8\ kg = \frac{6.8 \times 10^{-6}\ kg}{}$	

Graphing

- Making a graph helps you see how two factors called variables are related.
- A line graph has a horizontal x-axis and a vertical y-axis.

robu_s (Adobe Stock)

- When making a line graph make sure to:
 - Create an appropriate title and axis labels.
 - Place the independent variable (the one that we change) on the x-axis.
 - Place the dependent variable (the one that we are measuring) on the y-axis.
 - Create a reasonable scale for each axis.
 - Plot the points and connect them with straight lines.

Example

• Use the data to draw a line graph.

Age of Dog (years)	Mass of Dog (kg)
0	1
1	5
2	8
3	8
4	9
6	8

Algebra

- Scientists use equations to express physical relationships between measurable quantities.
- Algebra is the tool that scientists use to relate one equation to another, or to convert an equation into a more useful form.

Jonnyu (personal use

 To solve an algebraic equation, we need to "undo" the operations and isolate the variable.

$$x + 3 = 5$$

To undo the addition, we need to subtract 3 from both sides of the equation.

$$x + 3 - 3 = 5 - 3$$

$$x = 2$$

$$2x = 8$$

To undo the multiplication, we need to divide 2 from both sides of the equation.

$$\frac{2x}{\frac{2}{2}} = \frac{8}{\frac{2}{2}}$$

$$x - 2 = 6$$

To undo the subtraction, we need to add 2 from both sides of the equation.

$$x - 2 + 2 = 6 + 2$$

 $x = 8$

$$\frac{c}{c} = 4$$

 $\frac{-}{3} = 4$ To undo the division, we need to multiply 3 from both sides of the equation.

$$3 \times \frac{x}{3} = 4 \times 3$$

$$x = 12$$

• Some equations take more than one step to solve.

$$2x + 3 = 7$$

Subtract 3 from both sides.

$$2x + 3 - 3 = 7 - 3$$

$$2x = 4$$

Divide both sides by 2.

$$\frac{2x}{2} = \frac{4}{2}$$

$$x = 2$$

$$\frac{x-4}{3} = 1$$

 $\hbox{Multiply both sides by } 3$

$$3\frac{x-4}{3} = 1 \times 3$$

$$x - 4 = 3$$

Add 4 to both sides.

$$x - 4 + 4 = 3 + 4$$

$$x = 7$$

$$\frac{6}{x} = 3$$

Multiply both sides by $\boldsymbol{\mathcal{X}}$

$$x \frac{6}{x} = 3x$$

$$6 = 3x$$

Divide both sides by 3.

$$\frac{6}{3} = \frac{3x}{3}$$

$$2 = x$$
or
$$x = 2$$

$$r = 2$$

